Diffeomorphisms preserving Morse-Bott foliations

Olexandra Khohliyk

(Department of Geometry, Topology and Dynamic Systems, Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 4e, Kyiv, 03127 Ukraine) *E-mail:* khokhliyk@gmail.com

Sergiy Maksymenko

(Topology Laboratory, Institute of Mathematics of NAS of Ukraine, Tereshchenkivska str., 3, Kyiv, 01004 Ukraine)

E-mail: maks@imath.kiev.ua

Let M be a smooth compact manifold and \mathcal{F} be a codimension one foliation on M having singular leaves of Morse-Bott type. This means that there the set Σ of singular leaves of \mathcal{F} is a disjoint union of compact submanifolds Let also $\mathcal{D}(\mathcal{F})$ be the group of diffeomorphisms of M leaving each leaf invariant, and $\mathcal{D}(\mathcal{F}, \Sigma)$ be the subgroup of $\mathcal{D}(\mathcal{F})$ consisting of diffeomorphisms fixed on Σ .

Theorem 1. [1] The "restriction to Σ map"

 $\rho: \mathcal{D}(\mathcal{F}) \to \mathcal{D}(\Sigma), \qquad \rho(h) = h|_{\Sigma_f},$

is a locally trivial fibration with fibre $\mathcal{D}(\mathcal{F}, \Sigma)$.

This result can be regarded as a "foliated" variant of the well know results by Cerf and Palais on local triviality of restrictions. In particular, the map ρ has a path-lifting property, and so it contains a "foliated" variant of isotopy extension theorem:

Corollary 2. [1] Let $H: \Sigma \times [0,1] \to \Sigma$ be a C^{∞} isotopy with $H_0 = \mathrm{id}_{\Sigma}$. Then it extends to an isotopy $H: M \times \to M$ such that $H_t \in \mathcal{D}(\mathcal{F}, \Sigma)$ for all $t \in [0, 1]$.

References

[1] Olexandra Khohliyk, Sergiy Maksymenko, Diffeomorphisms preserving Morse-Bott functions, arXiv:1808.03582